Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present results from the Chandra X-ray Observatory Large Project (878 ks in 28 observations) of the Large Magellanic Cloud supernova remnant N132D. We measure the expansion of the forward shock in the bright southern rim to be over the ∼14.5 yr baseline, which corresponds to a velocity of 1620 ± 400 km s−1after accounting for several instrumental effects. We measure an expansion of and a shock velocity of 3840 ± 260 km s−1for two features in an apparent blowout region in the northeast. The emission-measure-weighted average temperature inferred from X-ray spectral fits to regions in the southern rim is 0.95 ± 0.17 keV, consistent with the electron temperature implied by the shock velocity after accounting for Coulomb equilibration and adiabatic expansion. In contrast, the emission-measure-weighted average temperature for the northeast region is 0.77 ± 0.04 keV, which is significantly lower than the value inferred from the shock velocity. We fit 1D evolutionary models for the shock in the southern rim and northeast region, using the measured radius and propagation velocity into constant density and power-law profile circumstellar media. We find good agreement with the age of ∼2500 yr derived from optical expansion measurements for explosion energies of 1.5–3.0 × 1051erg, ejecta masses of 2–6M⊙, and ambient medium densities of ∼0.33–0.66 amu cm−3in the south and ∼0.01–0.02 amu cm−3in the northeast assuming a constant density medium. These results are consistent with previous studies that suggested the progenitor of N132D was an energetic supernova that exploded into a preexisting cavity.more » « lessFree, publicly-accessible full text available October 29, 2026
-
Abstract Fast radio bursts (FRBs) are millisecond-duration radio transients that serve as unique probes of ionizedextragalactic matter. We report the discovery and localization of two FRBs piercing the Andromeda galaxy (M31) with the realfast transient-detection system at the Very Large Array. These unique sightlines enable constraints on M31’s electron density distribution. We localized FRB 20230930A to a host galaxy at redshiftz= 0.0925 and FRB 20230506C to a host galaxy at redshiftz= 0.3896. After accounting for the dispersion contributions from the Milky Way, the host galaxies, and the intergalactic medium, we estimate M31’s contribution to be 26–239 pc cm−3toward FRB 20230930A and 51–366 pc cm−3toward FRB 20230506C, within the 90% credible interval (CI). By modeling the M31 disk’s contribution, we isolate the halo component and find that M31’s halo contributes 7–169 pc cm−3along FRB 20230930A (90% CI). The inferred values of DMM31,halofrom the FRBs are consistent with predictions from a modified Navarro–Frenk–White profile at the corresponding impact parameter. The cool and warm phase gas is unlikely to account for the DMM31,halounless the ionization fraction is as high as 90%. While limited to two sightlines, these results offer tentative evidence for the existence of a hot halo surrounding M31. We also discuss the potential contribution of other foreground structures, particularly in explaining the DM excess observed in FRB 20230506C. This work demonstrates how FRBs can be used to probe the circumgalactic medium of intervening galaxies.more » « lessFree, publicly-accessible full text available November 6, 2026
-
We present uniformly measured resolved stellar photometry and star formation histories (SFHs) for 36 nearby (≲400 kpc) ultra-faint dwarf galaxies (UFDs; −7.1 ≤MV≤ +0.0) from new and archival Hubble Space Telescope (HST) imaging. We measure homogeneous distances to all systems via isochrone fitting and find good agreement (≤2%) for the 18 UFDs that have literature RR Lyrae distances. From the ensemble of SFHs, we find (i) an average quenching time (here defined as the lookback time by which 80% of the stellar mass formed,τ80) of 12.48 ± 0.18 Gyr ago ( ), which is compatible with reionization-based quenching scenarios; and (ii) modest evidence of a delay (≲800 Myr) in quenching times of UFDs thought to be satellites of the LMC or on their first infall, relative to long-term Galactic satellites, which is consistent with previous findings. We show that robust SFH measurement via the ancient main-sequence turnoff (MSTO) requires a minimum effective luminosity (i.e., luminosity within the observed field of view) ofMV≤ −2.5, which corresponds to ∼100 stars around the MSTO. We also find that increasing the signal-to-noise ratio above ∼100 at the MSTO does not improve SFH precision, which remains dominated by stochastic effects associated with the number of available stars. A main challenge driving the precision of UFD SFHs is the limitations in the accuracy of foreground dust maps. We make all photometry catalogs public as the first data release of a larger HST archival program targeting all dwarf galaxies within ∼1.3 Mpc.more » « lessFree, publicly-accessible full text available October 8, 2026
-
ABSTRACT We present an analysis of the two-point spatial correlation functions of high-mass X-ray binary (HMXB) and young star cluster (YSC) populations in M31 and M33. We find evidence that HMXBs are spatially correlated with YSCs to a higher degree than would be expected from random chance in both galaxies. When supplemented with similar studies in the Milky Way, Small Magellanic Cloud, and NGC 4449, we find that the peak value of the spatial correlation function correlates strongly with the specific star formation rate of the host galaxy. We additionally perform an X-ray stacking analysis of 211 non-X-ray detected YSCs in M31 and 463 YSCs in M33. We do not detect excess X-ray emission at the stacked cluster locations down to 3σ upper limits of ∼1033 erg s−1 (0.35–8 keV) in both galaxies, which strongly suggests that dynamical formation within YSCs is not a major HMXB formation channel. We interpret our results in the context of (1) the recent star formation histories of the galaxies, which may produce differences in the demographics of compact objects powering the HMXBs, and (2) the differences in natal kicks experienced by compact objects during formation, which can eject newly formed HMXBs from their birth clusters.more » « less
-
ABSTRACT Young stellar objects (YSOs) are the gold standard for tracing star formation in galaxies but have been unobservable beyond the Milky Way and Magellanic Clouds. But that all changed when the JWST was launched, which we use to identify YSOs in the Local Group galaxy M33, marking the first time that individual YSOs have been identified at these large distances. We present Mid-Infrared Instrument (MIRI) imaging mosaics at 5.6 and 21 $$\mu$$m that cover a significant portion of one of M33’s spiral arms that has existing panchromatic imaging from the Hubble Space Telescope and deep Atacama Large Millimeter/submillimeter Array CO measurements. Using these MIRI and Hubble Space Telescope images, we identify point sources using the new dolphot MIRI module. We identify 793 candidate YSOs from cuts based on colour, proximity to giant molecular clouds (GMCs), and visual inspection. Similar to Milky Way GMCs, we find that higher mass GMCs contain more YSOs and YSO emission, which further show YSOs identify star formation better than most tracers that cannot capture this relationship at cloud scales. We find evidence of enhanced star formation efficiency in the southern spiral arm by comparing the YSOs to the molecular gas mass.more » « less
-
Abstract Using resolved optical stellar photometry from the Panchromatic Hubble Andromeda Treasury Triangulum Extended Region survey, we measured the star formation history near the position of 85 supernova remnants (SNRs) in M33. We constrained the progenitor masses for 60 of these SNRs, finding that the remaining 25 remnants had no local star formation in the last 56 Myr, consistent with core-collapse supernovae, making them potential Type Ia candidates. We then infer a progenitor mass distribution from the age distribution, assuming single star evolution. We find that the progenitor mass distribution is consistent with being drawn from a power law with an index of − 2.9 − 1.0 + 1.2 . Additionally, we infer a minimum progenitor mass of 7.1 − 0.2 + 0.1 M ⊙ from this sample, consistent with several previous studies, providing further evidence that stars with ages older than the lifetimes of single 8 M ⊙ stars are producing supernovae.more » « less
-
Abstract The dwarf galaxy Triangulum (M33) presents an interesting testbed for studying stellar halo formation: it is sufficiently massive so as to have likely accreted smaller satellites, but also lies within the regime where feedback and other “in situ” formation mechanisms are expected to play a role. In this work, we analyze the line-of-sight kinematics of stars across M33 from the TREX survey, with a view to understanding the origin of its halo. We split our sample into two broad populations of varying age, comprising 2032 “old” red giant branch stars and 671 “intermediate-age” asymptotic giant branch and carbon stars. We find decisive evidence for two distinct kinematic components in both the old and intermediate-age populations: a low-dispersion (∼22 km s−1) disk-like component corotating with M33's Higas and a significantly higher-dispersion component (∼50–60 km s−1) that does not rotate in the same plane as the gas and is thus interpreted as M33's stellar halo. While kinematically similar, the fraction of stars associated with the halo component differs significantly between the two populations: this is consistently ∼10% for the intermediate-age population, but decreases from ∼34% to ∼10% as a function of radius for the old population. We additionally find evidence that the intermediate-age halo population is systematically offset from the systemic velocity of M33 by ∼25 km s−1, with a preferred central LOS velocity of ∼ − 155 km s−1. This is the first detection and characterization of an intermediate-age halo in M33, and suggests in situ formation mechanisms, as well as potentially tidal interactions, have helped shaped it.more » « less
-
Clusters, clouds, and correlations: relating young clusters to giant molecular clouds in M33 and M31ABSTRACT We use young clusters and giant molecular clouds (GMCs) in the galaxies M33 and M31 to constrain temporal and spatial scales in the star formation process. In M33, we compare the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER) catalogue of 1214 clusters with ages measured via colour–magnitude diagram (CMD) fitting to 444 GMCs identified from a new 35 pc resolution Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(2–1) survey. In M31, we compare the Panchromatic Hubble Andromeda Treasury (PHAT) catalogue of 1249 clusters to 251 GMCs measured from a Combined Array for Research in Millimeter-wave Astronomy (CARMA) 12CO(1–0) survey with 20 pc resolution. Through two-point correlation analysis, we find that young clusters have a high probability of being near other young clusters, but correlation between GMCs is suppressed by the cloud identification algorithm. By comparing the positions, we find that younger clusters are closer to GMCs than older clusters. Through cross-correlation analysis of the M33 cluster data, we find that clusters are statistically associated when they are ≤10 Myr old. Utilizing the high precision ages of the clusters, we find that clusters older than ≈18 Myr are uncorrelated with the molecular interstellar medium (ISM). Using the spatial coincidence of the youngest clusters and GMCs in M33, we estimate that clusters spend ≈4–6 Myr inside their parent GMC. Through similar analysis, we find that the GMCs in M33 have a total lifetime of ≈11–15 Myr. We also develop a drift model and show that the above correlations can be explained if the clusters in M33 have a 5–10 km s−1 velocity dispersion relative to the molecular ISM.more » « less
-
Abstract We present multiwavelength characterization of 65 high-mass X-ray binary (HMXB) candidates in M33. We use the Chandra ACIS survey of M33 (ChASeM33) catalog to select hard X-ray point sources that are spatially coincident with UV-bright point-source optical counterparts in the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region catalog, which covers the inner disk of M33 at near-IR, optical, and near-UV wavelengths. We perform spectral energy distribution fitting on multiband photometry for each point-source optical counterpart to measure its physical properties including mass, temperature, luminosity, and radius. We find that the majority of the HMXB companion star candidates are likely B-type main-sequence stars, suggesting that the HMXB population of M33 is dominated by Be X-ray binaries (Be-XRBs), as is seen in other Local Group galaxies. We use spatially resolved recent star formation history maps of M33 to measure the age distribution of the HMXB candidate sample and the HMXB production rate for M33. We find a bimodal distribution for the HMXB production rate over the last 80 Myr, with a peak at ∼10 and ∼40 Myr, which match theoretical formation timescales for the most massive HMXBs and Be-XRBs, respectively. We measure an HMXB production rate of 107–136 HMXBs/(M⊙yr−1) over the last 50 Myr and 150–199 HMXBs/(M⊙yr−1) over the last 80 Myr. For sources with compact object classifications from overlapping NuSTAR observations, we find a preference for giant/supergiant companion stars in black hole HMXBs and main-sequence companion stars in neutron star HMXBs.more » « less
-
Abstract We construct a catalog of star clusters from Hubble Space Telescope images of the inner disk of the Triangulum Galaxy (M33) using image classifications collected by the Local Group Cluster Search, a citizen science project hosted on the Zooniverse platform. We identify 1214 star clusters within the Hubble Space Telescope imaging footprint of the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER) survey. Comparing this catalog to existing compilations in the literature, 68% of the clusters are newly identified. The final catalog includes multiband aperture photometry and fits for cluster properties via integrated light spectral energy distribution fitting. The cluster catalog’s 50% completeness limit is ∼1500 M ☉ at an age of 100 Myr, as derived from comprehensive synthetic cluster tests.more » « less
An official website of the United States government
